Электронно-оптический индикатор
Электронно-оптический индикаторВведение в теорию программирования
Важнейшими математическими формализациями, рассматриваемыми в данном курсе, являются ламбда-исчисление и комбинаторная логика.Еще в 1924 г. М. Шейнфинкель (Moses Schonfinkel) разработал простую (simple) теорию функций, которая фактически являлась исчислением объектов-функций и предвосхитила появление ламбда-исчисления – математической формализации, поддерживающей языки функционального программирования (т.е. программирования в терминах функций).
Затем в 1934 г. А. Черч (Alonso Church) предложил собственно исчисление ламбда-конверсий (или ламбда-исчисление) и применил его для исследования теории множеств. Вклад ученого был фундаментальным, так что теория до сих пор называется ламбда-исчислением и часто именуется в литературе ламбда-исчислением Черча.
Позднее, в 1940 г., Х. Карри (Haskell Curry) создал теорию функций без переменных (иначе называемых комбинаторами), известную в настоящее время как комбинаторная логика. Эта теория является развитием ламбда-исчисления и представляет собой формальный язык, подобный языку функционального программирования.
В 60-х годах Х. Барендрегтом (H. Barendregt) были детально описаны синтаксис (т.е. форма конструкций) и семантика (т.е. значение конструкций) ламбда-исчисления.
Вступительная лекция
Объектно-ориентированный подход к программированию
Концепции общей теории информации
Содержание раздела